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Abstract. Rare kinks (1.74× 10−3 kinks nm−1) on the otherwise molecularly straight〈001〉
growth steps on the (010) face of orthorhombic lysozyme were studied. These straight steps are
generated at the edge between the (010) and (110) faces. Each step is assumed to propagate by
creation of one-dimensional (1D) ‘nuclei’—the segments of a new molecular rows irreversibly
attached to the straight step in the course of a trial and error process. Each ‘nucleus’ is built of
two neighbouring unit cells and is thus limited by two kinks possessing opposite signs. The steps
move along the face at a rate∼0.19 nm s−1, at relative supersaturation about unity. Kink statistics
and step rate measurements allowed us to evaluate the velocity of the kink along the step to be
19.3 nm s−1, and corresponding average frequencies at which attachment to and detachment from a
kink occur to be'50 and 25 molecules s−1, respectively. The rate at which the 1D ‘nuclei’ appear
at a step was found experimentally to beJ = 2.7× 10−5 nm−1 s−1.

This rate was also calculated as a probability that a sole molecular species adsorbed at the
otherwise straight step will stay there forever. The rate of an arbitrarily oriented step driven by the
1D nucleation was also theoretically found to have a non-singular minimum at the close-packed
orientation. On this theoretical basis, the coverage of the〈001〉 step by unit cells was extracted from
experimental data to be 6.5× 10−6. Taking into account translational, rotational and vibrational
partition functions flat face coverage with adsorbed molecules was estimated. The calculated
adsorption coverage fits with the experimental data if the molecular detachment energy from a kink
is∼6.6 kcal mol−1. The terrace adsorption coverage is∼10−3.

The same approach is used to outline simple equations for protein solubility. The predicted
solubility either rises with rising temperature—at a higher ratio of intermolecular binding energy to
kT—or diminishes as the temperature rises—in the opposite case. The latter retrograde solubility
comes from a high entropy loss associated with crystallization.

1. Introduction

The most elementary act of crystal growth is attachment of a molecule, atom or an ions
to the lattice at the kink position [1–5]. The rate of this process may be experimentally
evaluated from the step rate and kink density. Kink visualization has not been achieved for
inorganic crystal growth so far. Therefore only the step kinetics was quantitatively evaluated
[6–8]. However, essentially straight steps thus possessing low kink density have been observed
on, e.g., calcite and phosphates by atomic force microscopy (AFM) [9–11]; these steps are
supposed to proceed by one-dimensional nucleation of kink pairs and nevertheless comply
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with the Gibbs–Thomson law [9, 10]. Such compliance, generally speaking, is not necessarily
at high supersaturation [12, 18]. Though molecular resolution has been achieved on, e.g.,
dicalcium phosphate [11] single kinks were not clearly observed. However, high resolution
achieved on biomolecular crystals of at least an order of magnitude larger unit cells [14] opens
the way to study single kink behaviour. Recently, AFM allowed observation of the movement
of a single kink on growing thaumatin [15] and on lysozyme [16]. These observations suggest
that a molecularly straight step moves by one-dimensional nucleation of which the theory for
simple Kossel crystal was addressed earlier [17–22]. Analysing the kink statistics and step
kinetics, one may evaluate elementary frequencies of molecular attachments to the kinks and
the rate of 1D nucleation. The kink, i.e. half-crystal position [1–5], can be easily identified
in the simple lattices. However, in a complex lattice built of one or several types of molecule
or of various ions, these elementary species present in solution separate from one another
are often not in equivalent positions within the unit cell. Correspondingly, the steps which
are a fraction of the lattice spacing height are relatively rare though they were observed even
in simple lattices, e.g. on the (100) Ag face. Most often, however, the step height equals
the full lattice spacing. In these cases, detachment of different elementary species from the
crystal is associated with breaking different bonds, so that only the unit cell as a whole may
occupy a real kink, the half-crystal position. Actual steps on such a crystal would contain
various partially filled cells in the kink position, evidently following the Gibbs distribution.
The general concept and inevitable existence of the partially filled kinks is clear [13]. However,
for complex lattices, the growth and nucleation events need special consideration, which is
still missing.

In this paper, we first present experimental data on kink observations (sections 2, 3)
and statistics (section 4), then theoretically outline the rate of 1D nucleation for the Kossel
crystal making use of the conservation probability concept [23]—a different approach from
that employed earlier by Voronkov [17, 18] (section 5) and the rate of an arbitrarily oriented
step growing by 1D nucleation (section 6). Analysing, on this basis, the measured step
rate we extract the experimental kink rates, molecular fluxes in and out at the kinks, the 1D
nucleation rate (section 7) and kinetic coefficients (section 8). The 1D nucleation rate allows
us to estimate step coverage by unit cells (section 7). In section 9, simple adsorption and
solubility equations are derived by taking into account translational, rotational and vibrational
entropies in the ideal gas approximation. Confronting these equations with the experimental
data, molecular attachment energies and terrace coverages are evaluated. A summary is given
in section 10.

2. Experiment

Hen egg white lysozyme, HEWL (Seikagaku, Japan) crystals were obtained employing
spontaneous nucleation and growth by lowering temperature in an aqueous solution of 5 mass%
of HEWL, 5 mass% of NaCl at pH= 4.6. This acidity was adjusted by adding HCl. The
crystals shown in figure 1 are similar to the ones described earlier [24].

The most developed{010} face was investigated in the Nanoscope III Digital Instruments
Atomic Force Microscope (AFM) in the constant force mode. In the AFM, the silicon mitride
tips have the apex angle of 36◦. Scanning frequency was 10 Hz, 512 lines per frame. Molecular
resolution was achieved only with a small force,∼10−10 N applied to the sample. At a larger
force, the surface is damaged. When probing the crystal edges, we used a wide range of
scanning angles. A crystal on a glass substrate was placed in a standard cuvette with solution.
In our experiment conducted at 25◦C and discussed here, the supersaturationσ ≡ C/Ce − 1
was estimated to be close to 1, whereC andCe are the actual and equilibrium concentrations
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Figure 1. AFM images of steps on the (010) face.
Straight white steps are parallel to thec-axis,〈001〉,
and are moving to the left. Dark zigzag wavy steps
are moving to the right.

respectively, withCe determined from the solubility curve in [25]. The crystal structure is
described by the space groupP212121 and according to the x-ray determinations [26, 27] has
lattice spacing,a = 5.65 or 5.64,b = 7.39 or 7.37,c = 3.05 or 3.04, respectively.

3. Step Sources

Typically, on the (010) face of orthorhombic lysozyme, the steps are generated by dislocation
and, very rarely, by two-dimensional nucleation. Steps on the surface are strongly anisotropic
(figure 1): these are straight when moving to the left in figure 1 (white contrast), while they
acquire various orientations when propagating to the right (dark contrast). The steps studied in
this work were exclusively split from the excrescence (figure 2) formed along the whole edge
between the (010) and (110) faces due to unknown reasons, probably high supersaturation.
The excrescence slope provides a train of practically parallel steps on the (010) face moving in
one direction only (figure 3) corresponding to the white contrast in figure 1. The dislocations
and 2D nucleation sources were suppressed by this train. Such a train is shown in figure 3
in which figure 3(b) is taken 304s later than figure 3(a). The corresponding step rate was
measured to beνst = 0.19 nm s−1.

4. Kink images and statistics

Figure 4 shows one single kink on a step (black line) between the upper terrace on the right
and lower terrace on the left. The periodical lattice cell rows are seen on both terraces. The
kink height measured in the horizontal direction follows from the step shift and thus equals
one lattice spacing along thea-axis. The experimental resolution in the 9× 9 µm2 image
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Figure 2. Top (a) and side (b) views
of the flat-top excrescence on the〈001〉
edge between the (110) and (010) faces.
The excrescence is the only source
of the steps on the (010) face under
consideration.

is 9× 103 nm/512= 17.6 nm, since the image is built of 512× 512 blocks. Thus a kink
extended by about 17.6 nm was considered as single, while deeper ones were identified as
double, triple etc, depending on the kink height. Fortunately, these complex kinks are rare and
do not influence kink statistics essentially.

In figure 3, a kink moving down along a step, is named positive, ‘+’; the one moving up
is negative, ‘−’. The kink statistics are presented in table 1. The + and− kinks are supposed
to nucleate by pairs at random on the step and then disappear by mutual annihilation, also
at random points on the steps. We assume that the nucleation occurs at the same rate on
the straight, kink free segmentsij between two kinks of any type,i, j = +,−. The same is
expected to be true for the annihilation points if velocities of all kinks are constant. Under these
assumptions, the position of the + and− kinks on a step should not be correlated. Therefore,
the average lengths,xij (i, j,= +,−), of segments between any kinksi andj should be equal
to one anther, i.e. independent ofij :

xij = 1/(n+ + n−). (1)

The randomness means the Poisson distribution of the interkink distances. In other words, the
probability that a segment of a lengthx does not contain any kink is:

P(x) = exp[−(n+ + n−)x]. (2)

Thus the relative number of kinks separated by a distancex, such thatx1, < x < x2 is
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   a                                                                       b

                                                                        Step motion                     

Figure 3. Two subsequent 9× 9 µm2 AFM images of the〈001〉 steps, all moving to the left, the
frame a was taken 304 s earlier than b. The kinks statistics (see table) was collected on the three
steps marked by the arrows.

exp[−(n+ + n−)x1] − exp[−(n+ + n−)x2]. The corresponding histogram in figure 5 presents
the cumulative percentage of pairs of any kind possessing lengths within the ranges 0–200,
200–400,. . . ,1400 + 600 nm, withn+ + n− = 1.74× 10−3 nm−1, i.e. xij = 575 nm. The
probability (2) and histogram in figure 5 are normalized to the total number of pairs, evidently
equal to the total number of kinks,=269. The overall distribution of all segment lengths,x,
according to figure 5, seems to be Poissonian with sufficient accuracy, the experimental number
of pairs found within the intervals 0–200, 200–400,. . . , 1400–1600 nm are, respectively, 80,
54, 34, 27, 23, 17, 9, 12 with 13 segments exceeding the length of 1600 nm. Thus the accuracy
of ∼30% at the tail of the Poisson distribution in figure 5 does fit an estimate of the inverse
root square of the number of observed pairs.

Table 1. Statistics of kinks.

Types of kinks, Linear densities
i = +,− and Total of kinks and Average σ (dispersion,
interkink number of segments interkink distribution

ninj

n+ + n−segmentsij , kinks and ni, nij , distance of thexij )1/2

i, j = +,− segments Probabilities 10−3 nm−1 〈xij 〉 nm nm 10−3 nm−1

Total 269 1.74 575± 36 589± 25
+ 172a 0.639 1.11
− 97b 0.361 0.672
++ 123 0.457 0.796 567± 49 541± 35 0.711
+− 49 0.182 0.317 529± 109 766± 77 0.401
−+ 50 0.186 0.186 860± 61 430± 43 0.401
−− 47 0.175 0.304 418± 79 539± 79 0.226

a including 10 double, 6 triple and 1 quadruple kinks.
b including 7 double and 4 triple kinks.
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    60 x 130 nm2

a

c

Figure 4. Single kinks on the step showing black contrast
in figure 1. Left terrace is∼7 nm lower than the left.
Molecular rows are seen on both terraces. The kink is
supposed to be one lattice spacing deep,a = 5.65 nm
deep.

The dips on a step, i.e. the segments +−, are on average noticeably shorter than the
bumps:x+− = 529 whilex−+ = 860 nm. This asymmetry is in contrast with the much better
balance between probabilities to meet a dip versus bump:p+− = 0.182 versusp−+ = 0.186
(p+− + p−+ + p++ + p−− = 1, see table 1). If this disparity between thex+− andx−+ is not
a result of insufficient statistics, one may think of an impurity as a reason: if the impurity is
pushed by kinks it should accumulate in the dips (thex+− segments) and thus decrease the
kink rate.

We shall go on with the kink and step kinetics after the outline of one-dimensional (1D)
nucleation rate and the corresponding step rate required for this analysis.

5. One-dimensional nucleation

There are two ways to create kinks on an originally straight step of singular orientation parallel
to the chain of the strongest intermolecular bonds. The first presumes an ‘open system’—
adsorption of molecules from the surrounding solution, vapour, 2D adsorption layer or melt
at the straight step rise, attachment of the next molecules to these new kinks and reverse flux
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Figure 5. Distribution of the interkink segments over their lengths. Theoretical data follow Poisson
distribution.

of desorption and detachment of molecules from the adsorption position at the step and from
the kinks. The other way is rearrangement of molecules already making the step riser. The
latter conservative ‘closed system’ does not assume exchange with the surroundings [4]. Both
open and closed system mechanisms of the step shape fluctuations should result in the same
kink density at thermodynamic equilibrium. This equilibrium kink density is proportional
to exp(−ε/kT ) where ε is the kink energy [4, 5] and should be low at lowkT /ε ratio.
Noticeable deviation from equilibrium, typical of protein crystal growth, demands special
consideration to find the kinetic kink density and is addressed below. During steady state
crystal growth, the kinks of opposite signs annihilate at the rate at which the new kinks are
generated. The kink generation rates in the open and the closed systems are different. For
instance, on a〈100〉 step on a (001) face of a simple cubic lattice (Kossel crystal) relocation
of a molecule from the position ‘in the step’ to the position ‘at the step’ requires breaking four
bonds between nearest neighbours: three in the same layer and one in the layer below. This
will lead to creation of four kinks at once. If the bond strength isε0 = 2ε, the frequency
of relocation is proportional to exp(−8ε/kT ) and should be low at the low (kT /ε) ratio. In
contrast, adsorption from the surroundings, though it may require overcoming a dehydration
and entropic barrier higher than that on the conservative way, does not presume breaking of the
intermolecular bonds, and thus is expected to be faster, at sufficiently low (kT /ε) ratio. Thus,
the kinetic step roughness is different from the equilibrium one and depends on the roughening
mechanism.

As soon as the conservative fluctuation rate is low, creation of one-dimensional (1D)
nuclei by adsorption is of major importance. This process was first addressed by Voronkov
[18]. Here we use a different, even simpler approach to outline the 1D nucleation rate,
following [22] and [23]. Before doing so, we should realize the distinction between the simple
cubic model typically used and the real complex lattice. The unit cell of the orthorhombic
lysozyme is shown in figures 6(a) and (b), in two projections. As it is discussed below in
section 9, it reminds us of the simple cubic packing since each molecule has six nearest
neighbours [26, 27]. The fact that only single kinks one unit cell wide are observed indicates
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Figure 6. Schematic views of the orthorhombic lattice unit cell: a—viewed along thec-axis,
b—viewed along thea-axis. The relative strengths (kcal mol−1) of the contacts A, B, C were
estimated to be 70:46:31 by multiplying the numbers of the direct and water-mediated hydrogen
bonds and van der Waals bonds in each contact by the energies of 3, 1.5 and 0.3 kcal mol−1 per
each of these bonds, respectively [27]. In the approximation by cubic lattice, still only the unit
cell of four molecules makes the real kink and is considered as a growth unit for 1D nucleation.
Averaging the molecular states over the unit cell allows to introduce the effective binding energy
2ε0 for the single adsorbed molecule ‘Mol’ in figure C, 4ε0 for the adsorbed ‘cell’ and 3ε0 for the
single molecule ‘1’ in the pseudo-kink position.
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c

Figure 6. (Continued)

stronger binding within the unit cell than along the single rows parallel to the step, so that
separate rows of molecules, unlike thaumatin [15], are not deposited. However, at this point,
we only note that the 1D nuclei at the step should be made of two unit cells, i.e. of eight
molecules, and that the kink is built by the unit cell. Therefore, we will consider the cell
as the only growth unit. In sections 7 and 9 we shall qualitatively take into consideration
that each of these unit cells should be built by attachments and detachments of single
molecules.

We denote ultimate frequencies at which the whole unit cell appears and disappears at the
step byw+a andw−a, respectively. The sole absorbed unit may be joined from its both sides
by the next one at the frequencyw+ of attachment to a kink. Detachment from a kink occurs
at the frequencyw−. Binding in the kink is stronger than at the step. Therefore,w−a � w−.
At equilibrium,w+ = w−. In supersaturated solution,w+ > w−.

As soon as the adsorbed unit is joined by the next similar one, each of them may be
detached at the frequencyw− � w−a, which inequality makes the pair more stable than a
single unit. Attachment of the third, fourth etc unit from any side of the ‘one-dimensional’
cluster makes it even more stable and raises the chance that the first adsorbed unit and its
neighbour become a 1D nucleus, i.e. stay forever. The probability of this event of ultimate
conservation of the unit once it has appeared is designated asC1. Similarly, probabilities that
a once formed pair, triplet etc, of units will stay forever areC2, C3, . . .. Thus, out ofN single
adsorbed units,NC1 will stay forever. On the other hand, out of theseN unitsNp1 will be
joined by the next unit from either of two sides, where

p1 = 2w+/(2w+ +w−a). (3)

Out of theseNp1 pairs,Np1C2 will ultimately stay forever after the first attachment of the
second unit because, by definition,C2 is the probability that a pair, once formed, will stay
forever. The remainingNp1(1− C2) pairs will lose the second unit and come back to one
adsorbed unit, i.e. to the initial state. This state is conserved at probabilityC1. Therefore
Np1(1− C2)C1 units will be conserved after third, fourth etc attempts. Thus,

C1 = p1C2 + p1(1− C2)C1 or C1 = p1C2/[1− p1(1− C2)]. (4)

Similarly,

C2 = pC3/[1− p(1− C3)] Cn = pCn+1/[1− p(1− Cn+1)]

n = 2, 3, . . . p = w+/(w+ +w−). (5)
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For sufficiently long segments,n� 2, one should expectCn = Cn+1. Then (5) gives

C2 = C3 = · · · = C = [p − (1− p)]/p = (w+ − w−)/w+. (6)

SubstitutingC2 from equation (6) into equation (4) and taking into account thatw+a/c adsorbed
units appear per unit step length per unit time one obtains the 1D nucleation rate

J = (w+a/c)C1 = 2(w+a/c)(w+ − w−)/[w−a + 2(w+ − w−)] (7)

coinciding with the result of [17]. In [22] conservation of a pair was considered rather than
one unit. Therefore equation (7) is more relevant for 1D nucleation, though conservation
of four molecules might be relevant to find the frequency of appearance of the growth unit,
w+a.

6. Step rate

As soon as the 1D nucleation rate,J , is known we may calculate the rate of an arbitrarily
orientated step. A step strictly singular on average was considered in [17–21]. Let us consider
a step, deviated on average, from singular orientation by an angleϕ counted anticlockwise.
Then

n+ − n− = a−1 tanϕ (8)

wheren+ andn− are the kink densities (section 4) anda is the lattice spacing along thea-axis
normal to the step. The kinks are born and mutually annihilate by pairs. Therefore

J = 2vkn+−/x+− = 2vkn+n− since x+− = x−+ = x++ = x−− = (n+ + n−)−1. (9)

Combining equations (8) and (9) one obtains the kink densities,n+, n−, and step rate,νst :

an± = (1/2){[(± tanϕ) + [(tanϕ)2 + 2a2J/vk]
1/2} (10)

vst = (n+ + n−)avk = [(vk tanϕ)2 + 2a2vkJ ]1/2. (11)

Naturally, the step rate is minimal atϕ = 0. This minimum is smooth rather than singular,
as it should be for a fluctuating one-dimensional object, similar to the step energy anisotropy.
However, on our moving step, the fluctuations are of non-equilibrium, kinetic nature.

A step possessing the form of a loop and expanding at a constant rateνst from a nucleus
formed at the timet = 0 should by the timet have radius of curvatureR(ϕ) = (vst+∂2vst/∂ϕ

2)t

[5]. At ϕ = 0, R = R0 = vst [1 + (vk/vst )2]t ' (v2
k/vst )t if νk � νst . This relation

may provide another tool to determine the kink rate. In our experiment, however, all the
considered steps generated by edge excrescence were straight (figure 3) and did not form
closed loops.

7. Propagation and nucleation rates of kinks. Exchange fluxes

According to the first of equations (11), one can find the kink velocity,vk, if the step rate,
vst , and the total kink density,n+ + n−, are known experimentally. In our experiment,
vst = 0.19 ± 0.04 nm s−1, n+ + n− = 1.74 × 10−3 nm−1, a = 5.65 nm, so that
vk = 19.3 ± 4.1 nm s−1, i.e. it is 1/a(n+ + n−) ' 100 times the average step rate. The
kink rate may be expressed via the elementary frequencies of the new cell formationw+, or
dissolution,w− at the kink site:

vk = c(w+ − w−) = cw−σ ≡ βkω(C − Ce)
σ = (w+ − w−)/w− = (C − Ce)/Ce. (12)
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Hereβk is the kinetic coefficient for a kink andω is the volume of a molecule. It is related to the
measured step kinetic coefficientβst = vst/ω(C−Ce) asβk = βst/a(n++n−) (section 8). The
relative supersaturationσ should be expressed via the actual and equilibrium protein activities
approximated here by the corresponding concentration,C andCe. Taking c = 3.05 nm,
νk = 19.3 nm s−1, σ = 1 we obtain from equation (12) the unit cell fluxesw−, w+ from and
to a kink, respectively:

w− = vk/cσ = 6.3 units s−1 w+ = (1 +σ)w− = 12.6 units s−1. (13)

Displacement of a kink by the cell lengthc means filling the unit cell consisting of four
molecules. Then the molecular attachment and detachment frequenciesw+m, averaged over
the cell, are

w+m = 4w+ = 50.6 molecules s−1 w−m = 25.3 molecules s−1. (14)

The 1D nucleation rate follows from equation (11) withνk = 19.3 nm s−1, n+ = 1.11×
10−3 nm−1, n− = 0.627× 10−3 nm−1 (see table 1):

J = 2.7× 10−5 nm−1 s−1 = 2.7× 102 cm−1 s−1. (15)

With theseJ , νk, n+, n− one can ignore the angular deviation term(tanϕ)2 in equations (10)
and (11).

As mentioned in section 7, one may expectw−a � w− andw−a � w+−w−. Then with
c = 3.05 nm one obtains the coverageθ of the step by adsorbed unit cells from equation (7):

θ = w+a/w−a = Jc/2(w+ − w−) = 6.5× 10−6. (16)

If w−a < 2(w+ − w−) then equation (7) givesw+a ' Jc ' 8 × 10−5 s−1 which is in
contradiction with the natural expectation thatw+a is of the order ofw+ given by equation (13).

8. Kinetic coefficients

The kinetic coefficients of steps and kinks,βst andβk, are defined in and immediately after
equation (12). At the measuredvst = 0.19× 10−7 cm s−1, n+ + n− = 1.74× 104 cm−1,
a = 5.65× 10−7 cm,C = 2.09× 1018 cm−3, Ce = 1.05× 1018 cm−3, ω = 3× 10−20 cm3

one obtainsβst = 6.03× 10−7 cm s−1, βk = 6.14× 10−5 cm s−1.
Figures for comparison follow from the kinetic coefficient for steps on the (101) face

of tetragonal lysozyme,βst = 4.6× 10−5 cm s−1 [7]. It was found by first interferometric
measurements of the effective step rates as a function of logarithmic supersaturation, lnC/Ce,
to be 2.8 × 10−4 cm s−1 and recalculated for the absolute supersaturation (C − Ce) at
C/Ce = 5.47 ([33], p 344). The interferometrically observed dislocation hillocks were clearly
round suggesting that the interkink segments were not more than 2–3 intermolecular distances
long. Therefore, for the data of [7] one may expectβk ' 2×10−5 cm s−1 which is not far from
6.1× 10−5 cm s−1 in this work as would be expected for the same molecules. The difference,
again, may come from different molecular packing in the crystal bulk, step and kink. It is an
open question to what extent attachment and detachment frequencies are different for different
positions in the unit cell.

The Brownian frequency,ν, at which molecules attack kinks or other molecular sites may
be approximated as:

ν ' Cω2/3(kT /2πm)1/2 ' 108 s−1, (17)

with C = 2.09× 1018 cm−3, the surface per molecule site areaω2/3 ' 10−13 cm2 and the
average Brownian impinging velocity(kT /2πm)1/2 ' 5.2× 102 cm s−1. Having in mind
frequencies in equation (14), one should conclude that only one of about 106 protein molecules
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trying to enter the lattice succeeds. This supports the necessity of the pre-kink selection of
molecular orientation in solution [28]. In inorganic crystallization a similar difference may be
ascribed to the activation energy barrier. In protein, an essential entropic barrier should exist
[33]. The errors in this attachment of conformationally changed species, dimers, trimers and
other inhomogeneities and impurities, e.g. small molecules in sufficient amount, may induce
lattice strain, disorder and thus lower structural resolution [29, 30].

9. Adsorption and solubility–theoretical approach

The coverage of a step with unit cells,θ = 6.5× 10−6, extracted from the 1D nucleation
rate in equation (16) provides a possibility to determine the adsorption density of individual
molecules at the steps and terraces and to compare it with theoretical estimates.

In these estimates we should take into account both the energy and the entropy change
associated with adsorption. When adsorbed, a molecule loses the high freedom of translation
and rotation that it has in a liquid. It is now allowed only to vibrate translationally and
rotationally (we ignore here changes in internal motions of atoms and even groups building
this molecule). In other words, the adsorbed molecule is confined in a much smaller volume of
the phase space, since its coordinate and velocity ranges are now limited, as compared to the
bulk solution, despite the ‘wish’ of the temperature to expand the occupied phase space. Thus,
adsorption is associated with decrease of both translational and rotational entropy. The stronger
this limitation, the larger is the loss of entropy due to adsorption and the corresponding increase
of the free energy or chemical potential. The thermodynamic quantity that takes care of the
system spread in the phase space and thus of its entropy and energy is the partition function,
Z. In what follows, the partition function of the large protein molecules in ideal gas will be
used, having in mind that the ideal gas approximation for the dilute solution is well known
to provide the correct equation of state, i.e. osmotic pressure as a function of concentration
and temperature. We assume that this approximation describes some features of rotational
entropy also. Indeed, the Brownian translational and rotational motions of a macromolecule
in a liquid are characterized by average energykT /2 per degree of freedom, despite damping
of macroscopic motions by the solvent. To that accuracy, the distribution of states in the phase
space of coordinates and (both translational and rotational) velocities for the macromolecule
in solution are similar to the distribution in an ideal gas.

The standard translational partition function of a particle (the protein molecule) in ideal
solution or gas [31] is:

Zt = e/C33 3 ≡ h/(2πmkT )1/2 (18)

whereC is the protein molecule concentration is solution (cm−3), 3 is the de Broglie
wavelength of the molecule,m is the molecule mass,h = 6.62× 10−27 erg is the Planck
constant,k = 1.36× 10−16 erg K−1 is the Boltzman constant,T is the temperature. The
rotational partition function of an asymmetric molecule in a gas is [31]

Zr = √π(8π2kT I)3/2/h3 (19)

whereI is the moment of inertia of the (spherical) molecule. Partition functions for translational
and rotational vibrations should be taken in the high temperature approximation,hν � kT :

Zvt,vr = (kT /hνt,r )3. (20)

Here the translational (t) and rotational (r) vibration frequencies,

vt = (1/2π)(K/m)1/2 vr = (1/2π)(Kr/I)1/2 (21)
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are supposed to be equal for the three directions of translation and the three axes of rotation.
In equation (21),K (erg cm−2 = dyn cm−1) andKr (erg) are the force constants for thet and
r vibrations.

If we ignore internal degrees of freedom of the macromolecule, its chemical potentials in
the liquid solution (l) and in the adsorbed state (a) are:

µl = −kT ln[ZtZr/e] + εl (22)

µa = −kT ln[ZvtZvr/θ1] + εa (23)

where the partition functions are given by equations (18)–(21) whileεl andεa are the potential
energies in thel anda states andθ1 is the step coverage by single molecules. Equilibrium
coverage follows from the equalityµl = µa:

θ1 = C(33ZvtZvr/Zr) exp(2ε0/kT ). (24)

Taking 2ε0 = εl−εa, we have chosen a simple cubic lattice approximation of the orthorhombic
lysozyme of which the actual structure is shown in figures 6(a), (b) in projections to the
ab and thebc planes respectively [27]. The unit cell includes four molecules and each
molecule in the crystal bulk has six nearest neighbours. Its macrobonds A, B, C with the
neighbours consist of several hydrogen and van der Waals bonds. However, binding between
the molecules 3 and 4 is missing (figure 6(a)) and the whole arrangement is not simple cubic.
Nevertheless, we simplify this structure to simple cubic of the type shown in figure 6(c).
Thus we ‘average’ molecular states over the unit cell. However, we keep the real feature
of the lattice by considering the whole unit cell of four molecules as a growth unit for 1D
nucleation (section 5) and the kink as formed also by the whole unit cell. Actually, single
molecules are supposed to be attached and detached, so that both complete and incomplete
unit cells are present at the step. Considering the 1D nucleation, we ignored simultaneous
building of two neighbouring unit cells and the corresponding possibility of a faster nucleation
process.

In the simple cubic lattice approximation, adsorption of a molecule at the step is associated
with formation of two bonds of energyε0 each: thus, in equation (24), 2ε0 = εl − εa.
Substituting equations (18)–(21) into equation (24) one obtains the coverage of the step by
single molecules along the re-entrant angle (the state ‘Mol’ in figure 6(c)):

θ1 = πC(kT /K̃)3 exp(2ε0/kT ) K̃ ≡ (KKr)1/2. (25)

This coverageθ1 does not explicitly depend on molecular mass, moment of inertia or molecular
size. However, the effective force constant,K̃, does depends on the type, strength and extension
of the intermolecular contacts. Bothε0 andK̃ are parameters to be found from comparison
with experiment.

Arrangement of four molecules from the position ‘Mol’ at the step to the ‘Cell’
configuration at the step (figure 6(c)) does not change the number of unsaturated bonds, since
one bond can be ascribed to one face of the single cubic molecule. Therefore, probability of
finding a unit cell at the molecular step site, like any aggregate of four molecules of the same
energy, is

θ = θ4
1 . (26)

This equation links equation (25) to the experimental coverageθ of the step by the cells,
equation (16).

The second equation to determine the parametersε0 andK̃ is the solubility equation. It
is based on the well known fact that the chemical potential of a molecule in any kink position
is equal to its chemical potential in the crystal and, at equilibrium, should be equal to the
chemical potential of the molecule in the solution. For complex lattices with the unit cells
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formed by several molecules occupying non-equivalent positions, this statement is not correct
since only the unit cells as whole may form repeatable real kink positions. Nevertheless, as
mentioned above, to build a general qualitative framework, we average the states of various
non-equivalent molecules in the cell. Within this approximation, the molecule ‘1’ in figure 6(c)
is in the ‘kink’ position i.e. it is bound by three bonds of an average strength, though this is not
the actual kink built of four molecules. We assume also that the vibration frequencies in this
‘kink’ and at the step do not differ much one from another. Then, similarly to equation (25)
one can write the simple equation for solubility,Ce:

Ce = π−1(K̃/kT )3 exp(−3ε0/kT ) (27)

where 3ε0 is the cell-averaged detachment energy of a single molecule from the ‘kink’ in the
unit cell.

At kT = 4 × 10−14 erg, equations (24)–(27) provide the experimental coverageθ =
6.5×10−6 and concentrationCe = 1.05×10−18 cm−3 atε0 = 2.2 kcal mol−1 (ε0/kT ' 3.68)
andK̃ = 2.3×10−6 dyn. The apparent enthalpy of crystallization is thus 3ε0 ' 6.6 kcal mol−1.
This is rather close to the enthalpy of 7.6 kcal mol−1 following from the data of [32]. Keeping
the same approximations for the partition function of a molecule in the ‘kink’ 1 (figure 6(c)),
at the step (‘Mol’, figure 6(c)) and on the terrace, we obtain the terrace coverage at the bulk
concentrationC

θs = π(kT /K̃)3C exp(ε0/kT ) (28)

and the coverages at the crystal-solution equilibrium,C = Ce:
θ1e = exp(−ε0/kT ) θse = exp(−2ε0/kT ). (29)

The simplicity of expressions for solubility and coverages as well as the absence of the pre-
exponential factors in equation (29) come from the assumption that the vibration states in
the ‘kink’, at the step and on the terrace are identical. In real situation, the prefactors,
e.g. ratios of differentK̃ should appear along with different bond strengths and influence
of the solvent. Therefore one should remember that this approach is aimed only at building
a general framework of protein adsorption and solubility. In this model, dependence on pH
and nature of solvent comes throughε0 andK̃. A natural consequence of equation (29) is
that the higher is binding energyε0 in kT units, the lower the coverage as a result of lower
solubility.

Since the real kink energy is 4(ε0/2) = 2ε0, the equilibrium interkink distance is [4, 5]:

x0 = (c/2)[2 + exp(2ε0/kT )] = 792c = 2.42× 10−4 cm. (30)

Therefore, indeed, the step should be straight with only one kink per 792 lattice spacings.
Transition from this equilibrium to the actually measured interkink distance includes
equation (26), which takes care of the complex structure of the lattice. This equilibrium
average interkink distance is naturally larger than 188c following from table 1 supporting the
essentially kinetic nature of the observed kink density.

There are no data to judge the average force constant,K̃. For simple CH, CF, CCl, CNO2
bonds the valence (stretching) force constantK ' (3–5) × 105 erg cm−2 [34]. The force
constants change the angles between the bonds in the CCC, CCH, HCH, CCl, CCCl, HCO,
CCN molecules are within the range(0.5–1) × 10−11 erg. Thus the artificial combination
formally analogous toK̃ is∼(1–2)× 10−3 dyn, three orders of magnitude larger than theK̃

from equations (26) and (27). The difference may be ascribed to the different nature of the
binding. Specifically, it might come from the shallower potential well describing the extended
complex intermolecular protein contact, in particular with respect to rotation or gliding of one
molecule over the other, from the softer binding at the kink and step positions as compared to
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the bulk and, of course, from approximations used to obtain equations (25) and (27). With the
force constantK̃ ' 2.10−6 dyn, one might expect vibration frequencies of 109–1010 s−1, i.e.
in the radio frequency range.

Equation (27) gives general predictions for solubilities in macromolecular systems with
different binding energies. At strong binding,ε0/kT > 1, one should expect a conventional
exponential increase of solubility with temperature. Atε0/kT < 1, the solubility should be
retrograde, decreasing with increasing temperature: the large entropy increase associated with
dissolution prevails over the smaller loss in potential energy.

Coverage of a terrace with adsorbed molecules follows from equation (28) as 1.3× 10−3.
If this figure is close to reality, one should not expect an essential contribution to growth from
surface diffusion even if it exists in the adsorbed layer: the volume fraction of protein in the
bulk solutionCω ' 6.3× 10−2, i.e. is essentially larger than the surface coverage.

The surface energy per unit area at the〈001〉 step riser is'ε0/bc = 0.7 erg cm−2, close to
∼1.2 erg cm−2 for free energy on the (110) face of tetragonal lysozyme. However, the energy
per molecular site inkT units isε0/2kT ' 1.84, exceeding∼1.3 for tetragonal modification
where the steps are indeed far less polygonized. Of course strong anisotropy in binding [27]
should be the determining factor making the〈001〉 step straight.

10. Summary and conclusions

Straight elementary growth steps along the〈001〉 direction on the (010) face of orthorhombic
lysozyme moving away from the edge between the (010) and (110) faces were observed being
generated by a flat-top excrescence along the〈001〉 edge between the 010 and (110) faces
(figure 5). Single elementary kinks corresponding to the row of unit cells along thec-axis
have been directly seen and studied. The step height and kink width are close to the lattice
spacingb = 7.37 anda = 5.64 nm, respectively. Thus each kink riser should consist of four
molecules, the number of molecules per unit cell.

Statistics of 269 kinks of the both positive and negative signs were collected and the
step rate was measured to be 0.19 nm s−1 at the supersaturationC/Ce ' 2. The kink
rate evaluated from the step rate and the kink density was found to be 19 nm s−1. This
is equivalent to the attachment of 12.6 cells s−1 and detachment of 6.3 cells s−1. Since
the unit cell is built of four molecules these fluxes are equivalent, on average, to 50.4 and
25.2 molecules s−1 attaching to and detaching from the kink. The estimated Brownian attempt
frequency to join a kink site from solution is estimated to be 108 s−1. The difference is
believed to occur because of tough statistical selection of large asymmetric molecules in
solution before they are attached to the lattice. Kinetic coefficients for steps and kinks were
found to beβst = 6× 10−7 cm s−1, βk = 6× 10−5 cm s−1. The latter qualitatively fits
with βk ' 2× 10−5 cm s−1 estimated from theβst for rounded steps on the (101) face of
the tetragonal lysozyme. The one-dimensional (1D) nucleation rate was also evaluated from
the step rate and kink statistics to beJ = 2.7× 10−5 nm−1 s−1. The 1D nucleation rate was
outlined by the conservation function technique for the nucleus consisting of two unit cells,
the unit cell being considered as a building unit at the step. The corresponding equation forJ

allowed us to evaluate experimental coverage of the step unit sites by the completed unit cells
to be 6.5× 10−6.

Simple equations for adsorption and solubility have been derived taking into account the
partition function of a macroparticle both in an ideal gas and in the adsorbed state. Confronting
these equations with experiment an apparent dissolution enthalpy of1H = 6.6 kcal mol−1 was
found for the orthorhombic modification, not far from the experimental value of 7.6 kcal mol−1

[32]. The theoretical solubility is found to be proportional toT −3 exp(−1H/kT ) predicating
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a mainly exponential increase at1H/kT > 3 and retrograde solubility at1H/kT < 3
(1H < 1.8 kcal mol−1). The coverage of the step riser by single molecules is expected to be
(6.5× 10−6)1/4 ' 5× 10−2.
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